_
-
Ω
\Box
_
Ν
_
0
Q
2
_
\supset
Q
≥
7
3
3
\geq
a
=
-
7

STUDY MODULE DE	SCRIPTION FORM			
Name of the module/subject Formal languages and compilers	Code 1010334531010330115			
Field of study	Profile of study (general academic, practical)	Year /Semester		
Information Engineering Elective path/specialty -	(brak) Subject offered in: Polish	2 / 3 Course (compulsory, elective) obligatory		
Cycle of study:	Form of study (full-time,part-time)			
First-cycle studies	part-time			
No. of hours		No. of credits		
Lecture: 12 Classes: 8 Laboratory: 8	Project/seminars:	- 4		
Status of the course in the study program (Basic, major, other) (university-wide, from another field) (brak) (brak)				
Education areas and fields of science and art		ECTS distribution (number and %)		
technical sciences		4 100%		
Responsible for subject / lecturer:		1		
dr inż. Jolanta Cybulka email: jolanta.cybulka@put.poznan.pl tel. 0-61 6653724 Wydział Elektryczny ul. Piotrowo 3A 60-965 Poznań				

Prerequisites in terms of knowledge, skills and social competencies:

1	 Knowledge Student has the ground knowledge of mathematics, especially algebra, logic, mathematics and elements of discrete and applied mathematics. 					
		Student has grounded and theoretically founded elementary knowledge in algorithmics, abstract data types and their implementation, and also computational theory and practice.				
2	Skills	1. Student can by herself/himself acquire knowledge from the literature, databases and other sources; can also integrate the acquired knowledge, interpret it, reason, formulate conclusions and justify them.				
		2. Student can use programming platforms and environments to design, run and debug simple programs written in imperative, object-oriented and declarative programming languages.				
3	Social competencies	Student knows that she/he is obliged to perform well her/his job and also knows that she/he is obliged to perform well the part of assigned to her/him part of teamwork.				

Assumptions and objectives of the course:

Presentation of elements of the theory of formal languages and elements of the theory of translation. Introducing syntax-directed translation methods and tools in order to develop the ability to create the simple formal language processing scripts/systems.

Study outcomes and reference to the educational results for a field of study

Knowledge:

- 1. Student has structured and theoretically grounded knowledge of: basic programming constructs, implementation of algorithms, paradigms and styles of programming, methods of verifying the correctness of programs, and formal languages and compilers. [K_W05]
- 2. Student has structured and theoretically grounded knowledge of basic algorithms and their analysis, algorithm design techniques, abstract data types and their implementation, and also of computationally complex problems [K_W04]

Skills:

- 1. Student is able to create algorithms using basic algorithmic techniques and also can analyze their computational complexity. [K_U09]
- 2. Student is able to assess the usefulness of routine methods and tools to solve simple computer engineering tasks, and is able to select and use appropriate technologies. [K_U22]

Social competencies:

1. Student is aware of the importance of the accurate completion of the project, using the right notational standards, respecting the linguistic correctness and submitting the work on time. - [K_K07]

Assessment methods of study outcomes

Lecture and classes: writing test (checking the knowledge on the theory of formal languages and the theory of translation), minimal score 50,1%

Laboratory: a writing test which checks the skills in programming text transducers written in AWK; minimal score 50,1%.

Course description

Lecture:

The notion of a formal language. Alphabet, syntax and semantics of a formal language. The generative (combinatorial grammars-like) and the acceptor (abstract machine-driven) approaches to defining language syntax. Noam Chomsky?s classification of formal languages. Regular languages: finite automata, regular expressions. Using AWK and Lex systems to process regular languages. Context-free languages: pushdown automata, context-free grammars. Context and computational languages and their acceptor automata. The notion of a translation. Preliminaries concerning formal methods of defining the semantics of programming languages (operational, denotational and axiomatic). Translation: interpreting vs compiling. Phases and runs of a compiler. Using the syntax-directed translation to define the analytic phases of a compiler: lexical, syntactic and context-dependent. Basics of intermediate and final code generation, concept of an intermediate language. Basics of a runtime system: storage allocation, accessing the non-local variables and parameter passing.

Classes:

Solving problems connected with formalizing exemplary languages and specifying their acceptors (transducers).

- 1. Regular expressions
- 2. Finite state automata
- 3. Writing test.

Laboratory:

Implementing text transducers by using AWK system in the Linux environment.

- 1. Basics concerning running environment + AWK
- 2. AWK
- 3. AWK
- 4. AWK, AWK test

Basic bibliography:

- Cybulka J., Jankowska B., Nawrocki J. R.: Automatyczne przetwarzanie tekstów. AWK, Lexi YACC, Wyd. NAKOM, Poznań, 2002.
- 2. Hopcroft J.E., Ullman J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, 1979.
- 3. Aho A.V., Sethi R., Ullman J.: Compilers. Principles, Techniques and Tools. Pearson Education, Inc, 2006.

Additional bibliography:

- 1. Dembiński P., Małuszyński J.: Matematyczne metody definiowania języków programowania, WNT, Warszawa 1981.
- 2. Kernighan B.W., Ritchie D.M.: The C Programming Language. Prentice-Hall, 1988.

Result of average student's workload

Activity	Time (working hours)
1. lecture	12
2. classe	8
3. laboratory	8
4. student?s preparatory works for classes	22
5. student?s works for laboratory	22
6. student?s works for tests: lecture+classes	13
7. student?s works for tests: laboratory	13
8. writing tests	2

Student's workload

Source of workload	hours	ECTS
Total workload	100	4
Contact hours	30	1
Practical activities	60	2